E-ISSN 2218-6050 | ISSN 2226-4485
 

Original Article


African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises

Amos Ssematimba, Sasidhar Malladi, Peter J Bonney, Kaitlyn M St. Charles, Timothy C Boyer, Timothy Goldsmith, Carol J Cardona, Cesar A Corzo, Marie R Culhane.


Cited By:2

Abstract
Background: African swine fever (ASF) is one of the most important foreign animal diseases to the U.S. swine industry. Stakeholders in the swine production sector are on high alert as they witness the devastation of ongoing outbreaks in some of its most important trade partner countries. Efforts to improve preparedness for ASF outbreak management are proceeding in earnest and mathematical modeling is an integral part of these efforts.
Aim: This study aimed to assess the impact on within-herd transmission dynamics of African swine fever (ASF) when the models used to simulate transmission assume there is homogeneous mixing of animals within a barn.
Methods: Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous transmission model that considers three types of infection transmission, 1) within-pen via nose-to-nose contact; 2) between-pen via nose-to-nose contact with pigs in adjacent pens; and 3) both between- and within-pen via distance independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the homogeneous Gillespie models.
Results: Results showed that the predicted mean number of infectious pigs at specific time points differed greatly between the homogeneous and heterogeneous models for scenarios with low levels of between pen contacts via distance independent pathways and the differences between the two model predictions were more pronounced for the slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact between pigs in adjacent pens.
Conclusion: The findings emphasize the need for completing preliminary explorations when working with homogeneous mixing models to ascertain their suitability to predict disease outcomes.

Key words: African swine fever; Gillespie algorithm; Heterogeneity; Transmission models; Homogeneous mixing


 
ARTICLE TOOLS
Abstract
PDF Fulltext
HTML Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Amos Ssematimba
Articles by Sasidhar Malladi
Articles by Peter J Bonney
Articles by Kaitlyn M St. Charles
Articles by Timothy C Boyer
Articles by Timothy Goldsmith
Articles by Carol J Cardona
Articles by Cesar A Corzo
Articles by Marie R Culhane
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ssematimba A, SM, Bonney PJ, KMSC, TCB, Goldsmith T, CJC, CAC, Culhane MR. African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Vet J. 2022; 12(6): 787-796. doi:10.5455/OVJ.2022.v12.i6.2


Web Style

Ssematimba A, SM, Bonney PJ, KMSC, TCB, Goldsmith T, CJC, CAC, Culhane MR. African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. https://www.openveterinaryjournal.com/?mno=45136 [Access: March 14, 2024]. doi:10.5455/OVJ.2022.v12.i6.2


AMA (American Medical Association) Style

Ssematimba A, SM, Bonney PJ, KMSC, TCB, Goldsmith T, CJC, CAC, Culhane MR. African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Vet J. 2022; 12(6): 787-796. doi:10.5455/OVJ.2022.v12.i6.2



Vancouver/ICMJE Style

Ssematimba A, SM, Bonney PJ, KMSC, TCB, Goldsmith T, CJC, CAC, Culhane MR. African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Vet J. (2022), [cited March 14, 2024]; 12(6): 787-796. doi:10.5455/OVJ.2022.v12.i6.2



Harvard Style

Ssematimba, A., , . S. M., Bonney, . P. J., , . K. M. S. C., , . T. C. B., Goldsmith, . T., , . C. J. C., , . C. A. C. & Culhane, . M. R. (2022) African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Vet J, 12 (6), 787-796. doi:10.5455/OVJ.2022.v12.i6.2



Turabian Style

Ssematimba, Amos, Sasidhar Malladi, Peter J Bonney, Kaitlyn M St. Charles, Timothy C Boyer, Timothy Goldsmith, Carol J Cardona, Cesar A Corzo, and Marie R Culhane. 2022. African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Veterinary Journal, 12 (6), 787-796. doi:10.5455/OVJ.2022.v12.i6.2



Chicago Style

Ssematimba, Amos, Sasidhar Malladi, Peter J Bonney, Kaitlyn M St. Charles, Timothy C Boyer, Timothy Goldsmith, Carol J Cardona, Cesar A Corzo, and Marie R Culhane. "African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises." Open Veterinary Journal 12 (2022), 787-796. doi:10.5455/OVJ.2022.v12.i6.2



MLA (The Modern Language Association) Style

Ssematimba, Amos, Sasidhar Malladi, Peter J Bonney, Kaitlyn M St. Charles, Timothy C Boyer, Timothy Goldsmith, Carol J Cardona, Cesar A Corzo, and Marie R Culhane. "African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises." Open Veterinary Journal 12.6 (2022), 787-796. Print. doi:10.5455/OVJ.2022.v12.i6.2



APA (American Psychological Association) Style

Ssematimba, A., , . S. M., Bonney, . P. J., , . K. M. S. C., , . T. C. B., Goldsmith, . T., , . C. J. C., , . C. A. C. & Culhane, . M. R. (2022) African swine fever detection and transmission estimates using homogeneous versus heterogeneous model formulation in stochastic simulations within pig premises. Open Veterinary Journal, 12 (6), 787-796. doi:10.5455/OVJ.2022.v12.i6.2