E-ISSN 2218-6050 | ISSN 2226-4485
 

Review Article


Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health

Shima Kazemzadeh, Olga Korneeva, Sergey Shabunin, Mikhail Syromyatnikov.


Abstract
The development and spread of superbugs, which are bacterial strains resistant to several types of antibiotics, threatening the lives of myriad people and animals worldwide, is one of the most concerning issues facing both global and animal health. Dairy animals are considered to be key reservoirs of antibiotic-resistant bacteria, which are closely correlated with the widespread and inappropriate application of antibiotics in agriculture and veterinary medicine, particularly for mastitis treatment. Although antimicrobial agents are administered in dairy farming for various conditions beyond mastitis, such as respiratory infections and digestive disorders, as well as prophylaxis and growth promotion, the most common reason for antimicrobial use in this industry is mastitis treatment. Since raw milk can be contaminated with opportunistic pathogens carrying antimicrobial resistance genes, these pathogens increase the gene pool from which pathogenic bacteria can acquire resistance traits. Indeed, these resistance genes may be horizontally transferred from livestock to human pathogens through mobile genetic elements through the consumption of raw milk. This phenomenon poses a global health threat, emphasizing the necessity of applying the “One Health” approach in global health and medicine to safeguard animal health and public health. Given the high prevalence and economic impact of mastitis and the evidence supporting mastitis as a major driver of antimicrobial use in dairy farming, this review summarizes recent genomic and metagenomic studies on major mastitis-causing pathogens (Staphylococcus aureus, Escherichia coli, Streptococcus spp., and Pseudomonas spp.) in dairy animals, detailing their primary resistance mechanisms. We highlight advanced surveillance tools, such as metagenomics, whole-genome sequencing, and quantitative polymerase chain reaction, for the rapid detection of resistance genes and mobile elements in the dairy chain.

Key words: Antimicrobial resistance; Mastitis; Opportunistic pathogens; Resistance genes; Veterinary.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Shima Kazemzadeh
Articles by Olga Korneeva
Articles by Sergey Shabunin
Articles by Mikhail Syromyatnikov
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Kazemzadeh S, Korneeva O, Shabunin S, Syromyatnikov M. Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Vet. J.. 2025; 15(9): 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5


Web Style

Kazemzadeh S, Korneeva O, Shabunin S, Syromyatnikov M. Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. https://www.openveterinaryjournal.com/?mno=250397 [Access: October 06, 2025]. doi:10.5455/OVJ.2025.v15.i9.5


AMA (American Medical Association) Style

Kazemzadeh S, Korneeva O, Shabunin S, Syromyatnikov M. Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Vet. J.. 2025; 15(9): 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5



Vancouver/ICMJE Style

Kazemzadeh S, Korneeva O, Shabunin S, Syromyatnikov M. Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Vet. J.. (2025), [cited October 06, 2025]; 15(9): 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5



Harvard Style

Kazemzadeh, S., Korneeva, . O., Shabunin, . S. & Syromyatnikov, . M. (2025) Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Vet. J., 15 (9), 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5



Turabian Style

Kazemzadeh, Shima, Olga Korneeva, Sergey Shabunin, and Mikhail Syromyatnikov. 2025. Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Veterinary Journal, 15 (9), 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5



Chicago Style

Kazemzadeh, Shima, Olga Korneeva, Sergey Shabunin, and Mikhail Syromyatnikov. "Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health." Open Veterinary Journal 15 (2025), 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5



MLA (The Modern Language Association) Style

Kazemzadeh, Shima, Olga Korneeva, Sergey Shabunin, and Mikhail Syromyatnikov. "Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health." Open Veterinary Journal 15.9 (2025), 3980-4006. Print. doi:10.5455/OVJ.2025.v15.i9.5



APA (American Psychological Association) Style

Kazemzadeh, S., Korneeva, . O., Shabunin, . S. & Syromyatnikov, . M. (2025) Antibiotic resistance in mastitis-causing bacteria: Exploring antibiotic-resistance genes, underlying mechanisms, and their implications for dairy animal and public health. Open Veterinary Journal, 15 (9), 3980-4006. doi:10.5455/OVJ.2025.v15.i9.5